

Architekturen betrieblicher Anwendungssysteme

Bewertung von Anwendungslandschaften

Lehrstuhl für Wirtschaftsinformatik Prozesse und Systeme

Universität Potsdam

Chair of Business Informatics Processes and Systems

University of Potsdam

Univ.-Prof. Dr.–Ing. habil. Norbert Gronau

Lehrstuhlinhaber | Chairholder

Mail August-Bebel-Str. 89 | 14482 Potsdam | Germany

Visitors Digitalvilla am Hedy-Lamarr-Platz, 14482 Potsdam

Tel +49 331 977 3322

E-Mail ngronau@lswi.de

Web Iswi.de

Lernziele

- Wie können Sie die Qualitätseigenschaften einer Unternehmensarchitektur spezifizieren und bewerten?
- Welche Methoden und Ansätze können zur Analyse von Redundanzen und Lücken in Anwendungslandschaften eingesetzt werden?
- Wie analysieren Sie die Kosten und den Nutzen von Anwendungssystemen, um strategische Entscheidungen im Bebauungsplan zu treffen?
- Wie bewerten Sie die Komplexität von IS-Landschaften und deren Auswirkungen auf den Entwicklungs- und Betriebsaufwand?
- Was ist der Unterschied zwischen Virtualisierung und Contanisierung?

QuizApp

Einwahldaten

URL: https://quiz.lswi.de/login

Lecture Code: aba19

Analyseverfahren für Anwendungslandschaften

Komplexität von Anwendungslandschaften Virtualisierung und Contenerisierung

Architekturbewertung

Grundlegendes

- Alle Aktivitäten zur qualitativen oder quantitativen Bestimmung der Qualitätseigenschaften einer Architekturspezifikation
- Überprüfung der Qualität der Architekturspezifikation
- Ergebnis = Nachweis über Erfüllung aller Qualitätsanforderung bzw.
 Identifikation von nachzubessernden Schwachstellen
- Entwicklungsaufwand, Zeit und Kosten teilweise sehr hoch
- Bedarf an Methoden und Werkzeuge zur Abschätzung der Qualität des Systems gegen die Kunden-Anforderungen während des Evaluierungsprozesses

Die Architekturbewertung dient der Sicherstellung von Qualitätseigenschaften

Software-Architekturbewertung

Definition der Qualitätsmerkmale

Modifizierbarkeit

 Eignung einer Architektur, Anforderungsänderungen möglichst schnell und kostengünstig umzusetzen

Zuverlässigkeit

 Fähigkeit einer Software unter den gegebenen Bedingungen fehlerfrei zu arbeiten

Portabilität

Anpassbarkeit einer
 Architektur an eine andere
 Umgebung (z.B. eine neue
 Plattform)

Ziele der Analyse von Architekturlandschaften

Untersuchungs- bereich	Beschreibung des Analyseverfahrens	Typische Fragestellungen				
Abdeckung	Abdeckung fachlicher Bereiche, z.B. Prozess/Produktmatrix	Welche Redundanzen oder Lücken gibt es bei der IT- Unterstützung für den Prozess X und das Produkt Y und die Organisationseinheit Z?				
Schnittstellen	Analyse der Schnittstellen zw. Anwendungssystemen hstl. Art, Anzahl, Komplexität, Häufigkeit/Aktualität, Performance, Stabilität, Verfügbarkeit	Gibt es Brüche bei der Unterstützung des Prozesses X? Sind produktübergreifende Gemeinsamkeiten in Prozessschritten auch übergreifend gelöst?				
Abhängig- keiten	Verknüpfte Elemente werden aus der Unternehmensarchitektur selektiert	Welche anderen Elemente sind betroffen, wenn wir die Infrastrukturkomponente X ablösen?				
Heterogenität	Die Heterogenität der IT-Assets in definierten Einsatzfeldern wird analysiert, z.B. Prozess/Produktmatrix.	Anzahl der Entwicklungslinien pro Einsatzfeld Anzahl der Infrastrukturkomponenten pro Zeile				

Ziele der Analyse von Architekturlandschaften II

Untersuchungs- bereich	Beschreibung des Analyseverfahrens	Typische Fragestellungen			
		Werden existierende Standards eingehalten?			
Konformität	Einhalten von Standards und Ermittlung	Werden die definierten Referenzarchitekturen implementiert?			
	des Abweichungsgrades. Compliance Rules	Anteil der Komponenten, die außerhalb des Standards liegen?			
		Werden gesetzliche Vorgaben, Marktstandards und Normen eingehalten?			
Kosten	Reporting über kumulierte Erstellungs-, Betriebs- und Wartungskosten.	Welche Kosten sind durchgängig über alle Ebenen der Unternehmensarchitektur mit der IT-Abbildung des Produktes X verbunden?			
Nutzen	Nutzenkalkulation z.B. in prozentualem Beitrag zur Erreichung von Unternehmenszielen	Welchen Beitrag zur Erreichung der Unternehmensziele leistet das Anwendungssystem X?			
Komplexität	Anzahl der Komponenten in der Unternehmensarchitektur und Anzahl ihrer	Wie viele Anwendungssysteme mit wie vielen Schnittstellen existieren?			
	Beziehungen	Wie viele Infrastruktursysteme mit wie vielen Schnittstellen existieren?			

Eine konsolidierte Unternehmensarchitektur ermöglicht umfangreiche Analysen. Quelle: Niemann 2005, S. 128-130

Abdeckungsanalyse

Aufbau

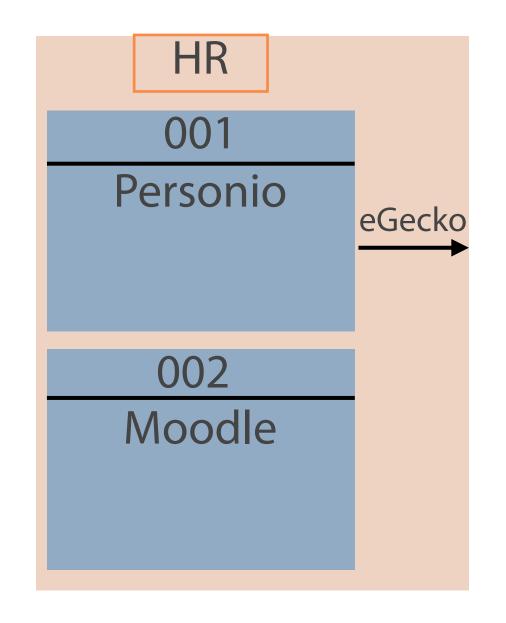
- Fachliche Gliederung der Anwendungslandschaft
- Erkennen von Redundanzen und Lücken

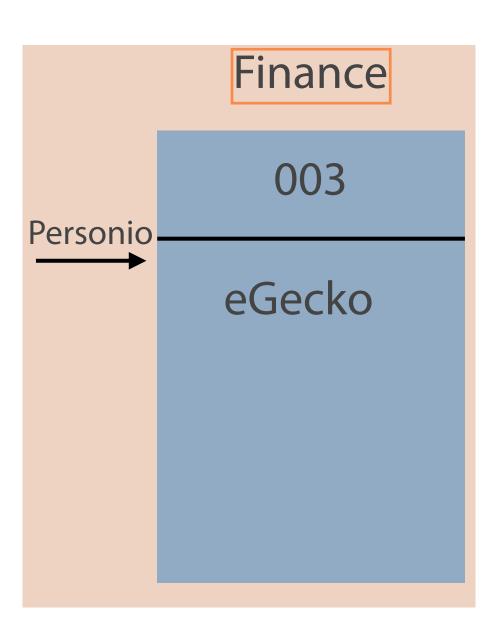
Typische Visualisierungen

- Clusterkarte
- Produkt/Prozess-Matrix
- Prozesslandkarte

Detailuntersuchung bei Lücken

- Gründe für Lücken
- Auswirkung der Lücken auf das Geschäft und die IT (ev. Medienbrüche)
- Entstehende Risiken
- Kosten zur Beseitigung der Lücken


Vertiefende Untersuchung hinsichtlich

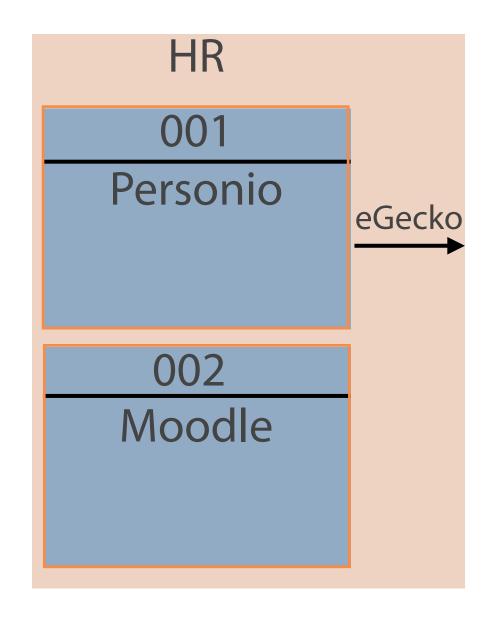

- Negativer Auswirkung der Redundanzen auf "Time to Market" bei Einführung neuer Produkte
- IT-Kosten zur Unterhaltung der redundanten Systeme
- Fachliche Argumente für den Erhalt der Redundanzen
- Ist eine Zusammenfassung möglich

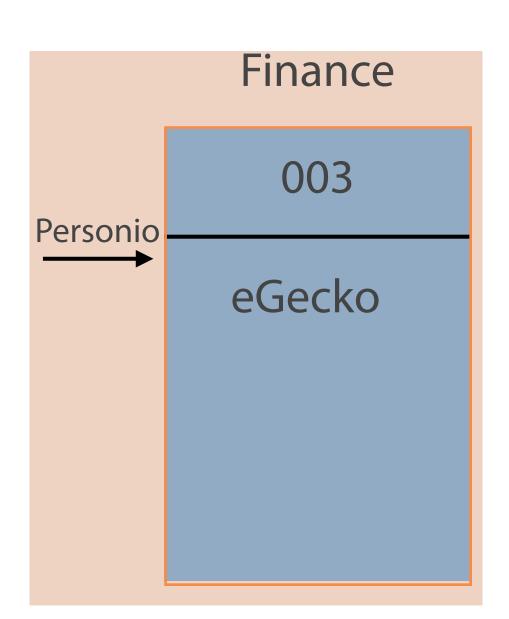
Die Abdeckungsanalyse erlaubt das Erkennen von Redundanzen und Lücken in der Anwendungslandschaft.

Clusterkarte als eine Visualisierung der Abdeckungsanalyse

Funktionsbereich

Beschreibung


- Visualisierung aller Systeme des Unternehmens
- Zuordnung der Systeme zu Funktionsbereichen (logischen Einheiten)
- Darstellung der
 Schnittstellenbeziehungen
 zwischen diesen Systemen


Vorteile

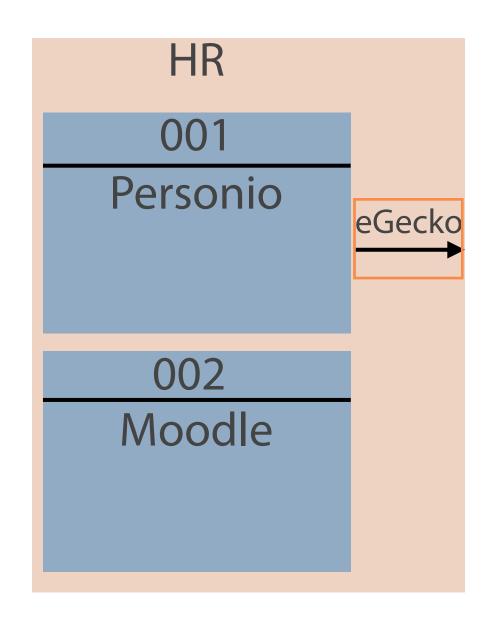
- Beziehungen zwischen den Clustern sind ersichtlich
- Erkennen von Datenaustausch zwischen den Anwendungen durch Verbindungen

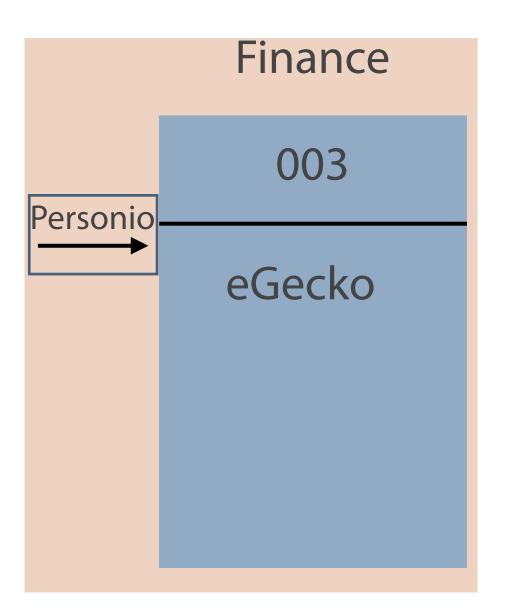
Clusterkarte als eine Visualisierung der Abdeckungsanalyse

Systeme

Beschreibung

- Visualisierung aller Systeme des Unternehmens
- Zuordnung der Systeme zu Funktionsbereichen (logischen Einheiten)
- Darstellung der Schnittstellenbeziehungen zwischen diesen Systemen


Vorteile


- Beziehungen zwischen den Clustern sind ersichtlich
- Erkennen von Datenaustausch zwischen den Anwendungen durch Verbindungen

Clusterkarte als eine Visualisierung der Abdeckungsanalyse

Output-Daten

Input-Daten

Beschreibung

- Visualisierung aller Systeme des Unternehmens
- Zuordnung der Systeme zu Funktionsbereichen (logischen Einheiten)
- Darstellung der
 Schnittstellenbeziehungen
 zwischen diesen Systemen

Vorteile

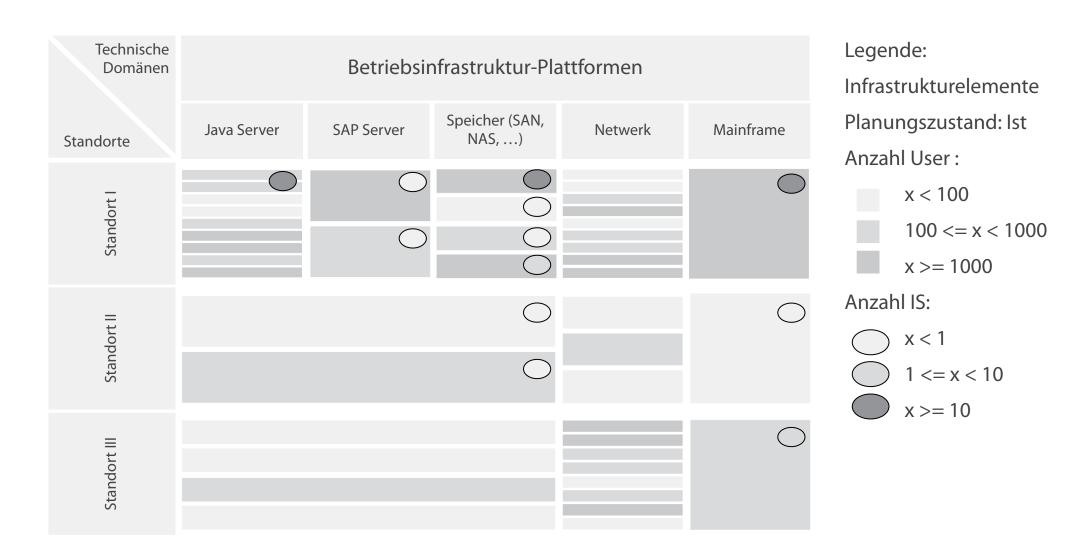
- Beziehungen zwischen den Clustern sind ersichtlich
- Erkennen von Datenaustausch zwischen den Anwendungen durch Verbindungen

Clusteranalyse

Beschreibung

- Technischen Bausteinen und Infrastrukturelementen für die Entwicklung oder den Betrieb von Informationssystemen
- Zusammenfassung von Bausteinen zu Informationssystemen (z. B. für ERP)
- Betrachtung und Gruppierung nach verschiedenen Kriterien, einschließlich technischer Aspekte

Ziel


- Identifikation von technischen Komponenten, die zusammen h\u00e4ngen
- Vereinfachung und Konsolidierung der Betriebsinfrastruktur (z.B. wenn unterschiedliche Datenbanken genutzt werden)
- Analyse der Lebenszyklen, die in Zukunft abgelöst werden müssen

Virtualisierung der Komponenten z.B. über Container ist immer mehr der Anspruch

Clusteranalyse für technische Bebauungspläne

Bebauungsplan-Grafik

- Übersicht über die Betriebsinfrastruktur
- Eingruppierung der verschiedenen
 Infrastrukturelemente
- z. B. SAP Server, in technische Domänen und Zuordnung zu den Betriebsstandorten
- Anzahl der Nutzer und die Anzahl der auf den Plattformen betriebenen Informationssysteme

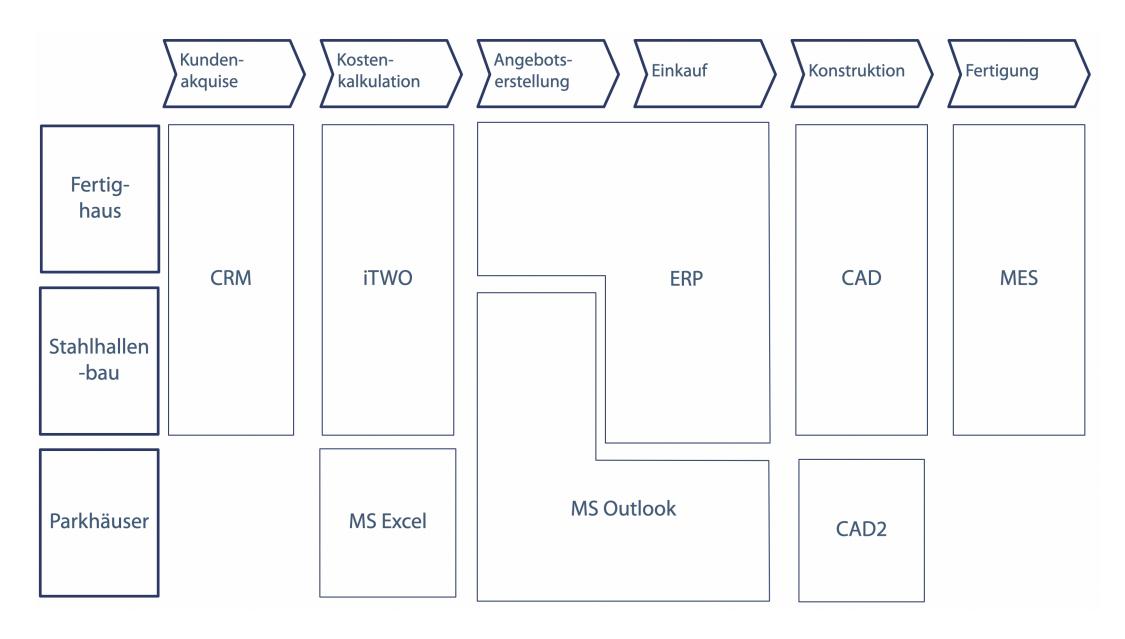
(Daten)-Cluster-Analyse für technische Bebauungspläne

Ergebnisse einer Daten-Cluster-Analyse

- Clusteranalysen können zum Beispiel inkonsistente Daten vorbeugen, indem Sie überblick über die Datenhaltung über verschiedene Systeme hinweg visualisieren
- Unterschieden wird hier in Daten "führendes" System und System, welches diese Daten verwendet
- Datenredundanzen über verschiedene Systeme hinweg können dargestellt und Optimierungspotenzial erkannt werden (Rohmaterial. Lagerort: CON & TUY)

				Informationssystem- Releases						
			ACTAC R2.2	ACTAC R2.2	FIS R2.3	CON R4.2	CON 4.3	TUY R1.0	Publisher R2.0	:
			15.1	15.2	153	154	15.5	156	15.7	•
Datencluster	Geschäftsobjekte									
Fertigungs daten	Fertigungsauftrag	GO2	F	F	V	V	V	V		
	Fertigungsauftrag. Termine	G07	F	F	V	٧	V	V		
	Arbeitsplan	G08	V	V	F					
	Werkstattauftrage	GO3			F			V	V	
	Prüfplan	G09	F	F	V					
	Kundenauftrag	GO1	V			,				
Lagerdaten	Rohmaterial. Lagerort	G04	V	V	V	F	F	F		
	Rohmaterial. Lagermenge	GO10	v	V	V	F	F	V		
	Wareneingangsbeleg	GO5			V	V	F	V		
 Mitarbeiterdaten	Lagerarbeiter	G06				'			V	

F Führendes System


Verwendung und Bearbeitung von Daten

Erstellung von Softwarekarten am Beispiel einer Clusterkarte

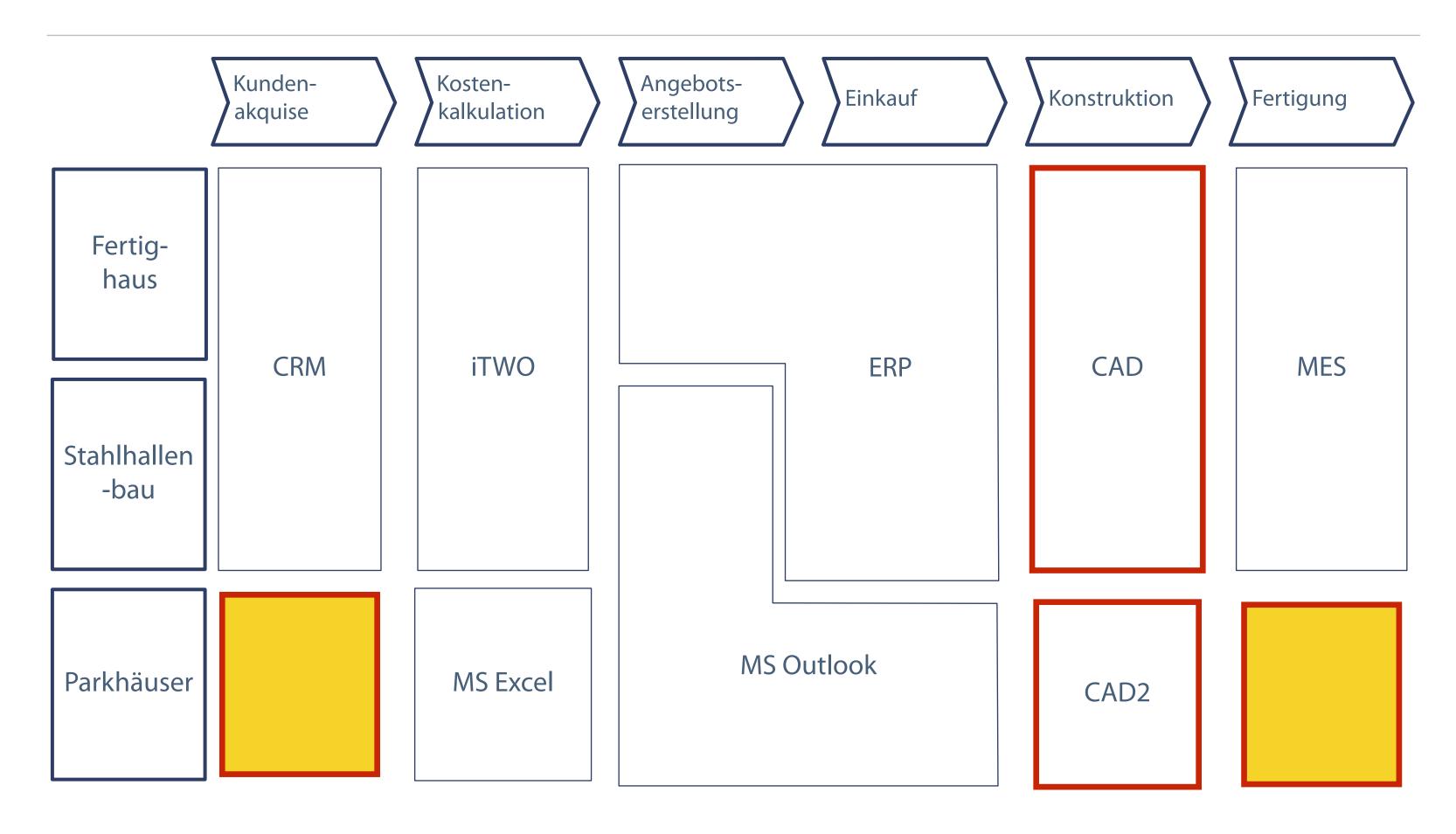
Vorgehen

- Erhebung der Anforderungen an die zu erstellenden Softwarekarten (Welche Aspekte sollen betrachtet werden?)
- Festlegen der Darstellungsformen der einzelnen Cluster
- Festlegung des Kartengrundes zur Clusterung
 (Abbildung der logischen Einheiten = Funktionsbereiche, z.B. Standort)
- Zuordnung weiterer Cluster (z.B. Systeme) zu den Funktionsbereichen
- Zuordnung weiterer Schichten
- Verbindungen: Darstellung der Schnittstellenbeziehungen zwischen diesen Systeme
- Kennzahlen antragen

Produkt/Prozess-Matrix als eine Visualisierung der Abdeckungsanalyse


Beschreibung

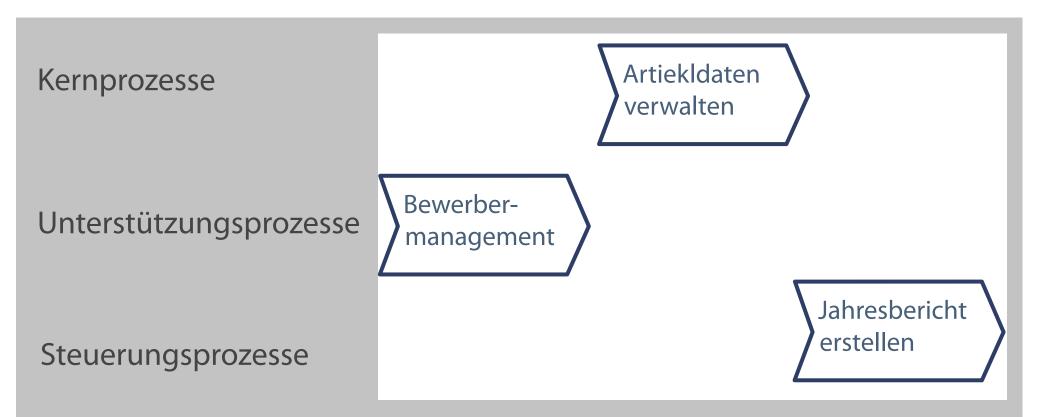
 Visualisierung aller Systeme des Unternehmens zu dem Prozess sowie dem jeweiligen Produkt


Vorteile

 Erkennung von Redundanzen oder fehlenden Systemen im Prozess über Produkte und Organisationseinheiten

Produkt/Prozess-Matrix als eine Visualisierung der Abdeckungsanalyse

Produkt/Prozess-Matrix - Redundanzen und Lücken erkennen


Erstellung von Softwarekarten am Beispiel einer Produkt/Prozesskarte

Vorgehen

- 1. Erhebung der Anforderungen:
- Klärung der Zielsetzung: Welche Fragestellungen sollen mit der Matrix beantwortet werden?
- Definition der gewünschten Granularität: Sollen alle Produkte, Teilprodukte, Prozesse oder Prozessschritte betrachtet werden?
- Identifikation relevanter Attribute: Welche weiteren Dimensionen (z. B. Organisationseinheiten, Systemzustände) sollen berücksichtigt werden?
- 2. Definition der Darstellungsform
- Zeilen: Prozesse oder Prozessschritte.
- Spalten: Produkte oder Produktbestandteile.
- 3. Sammlung und Strukturierung der Daten
- Zuordnung der aktuell eingesetzten Systeme zu Prozessen und Produkten.
- Erfassen aller Produkte oder Produktkomponenten, die durch die Prozesse bearbeitet werden.
- Identifizieren, welche Prozesse welche Produkte betreffen und welche Systeme dabei verwendet werden.

Kernsysteme

Unterstützungssysteme

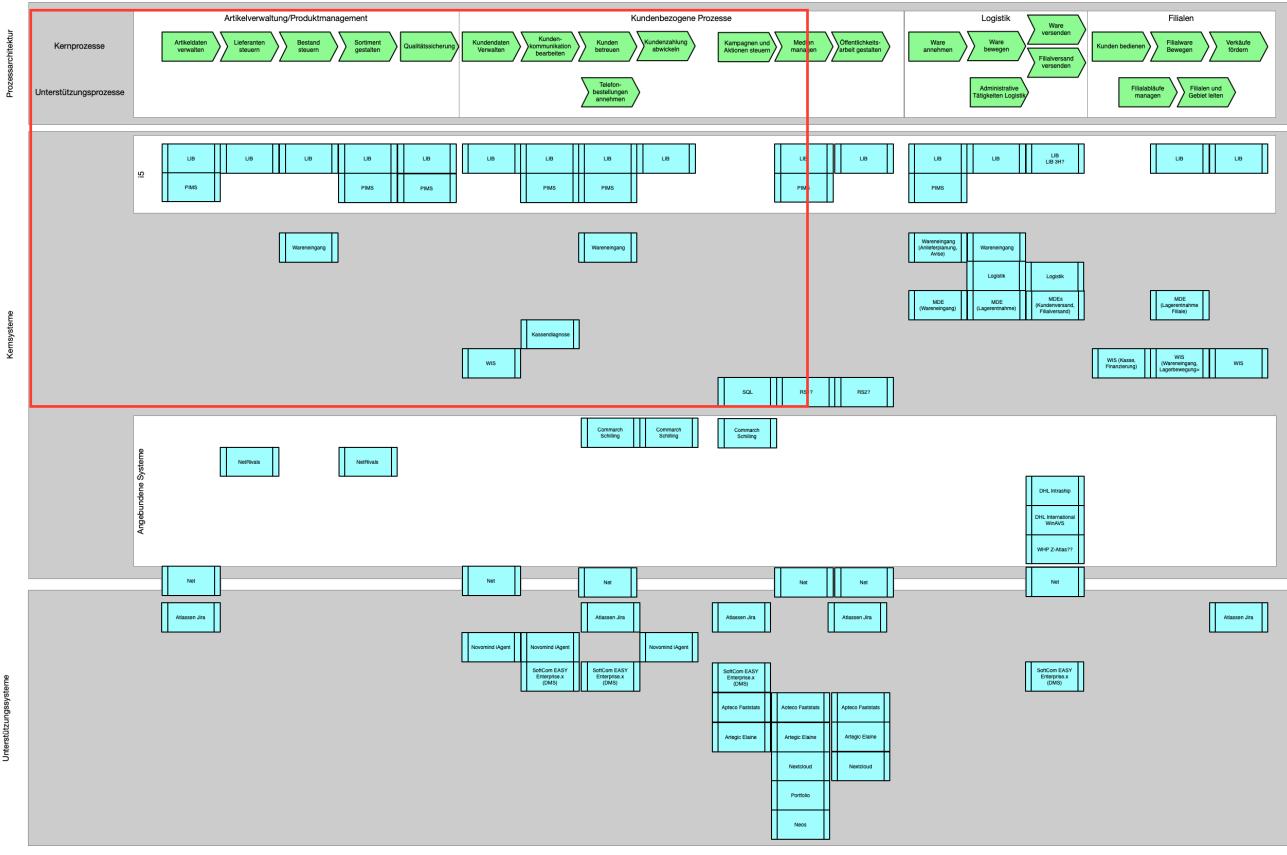
Beschreibung

 Darstellung der einzelnen Anwendungssysteme im Kontext der Prozesse (Kern-, Unterstützungs-, Steuerungsprozesse)

Vorteile

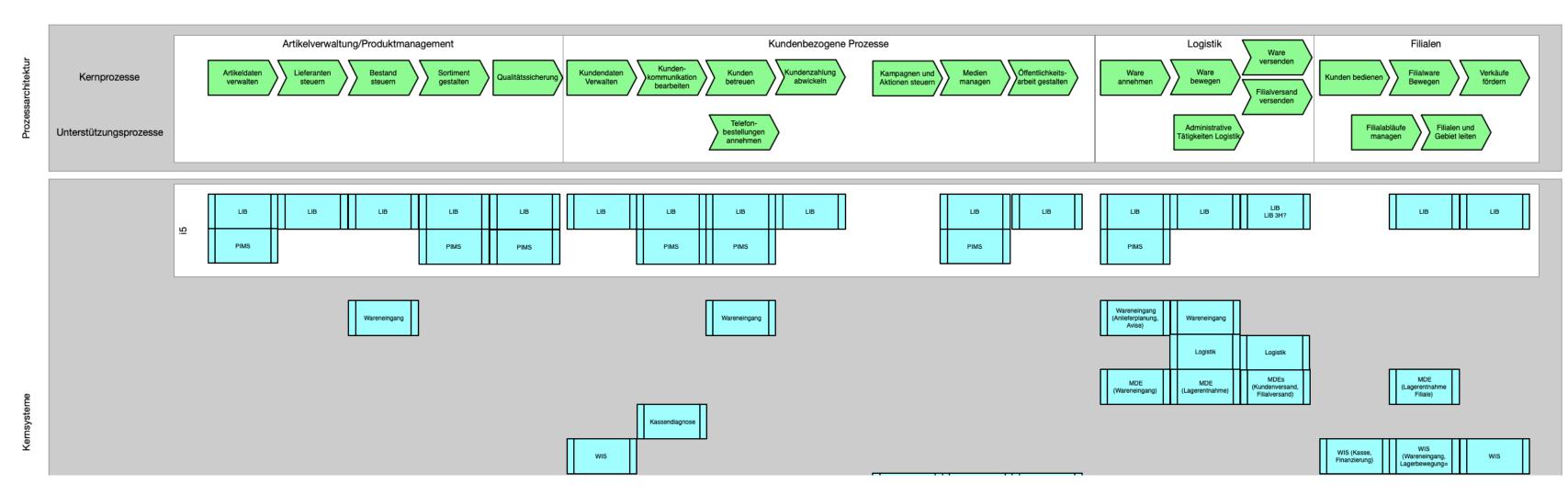
- Erkennung von Lücken durch den Prozess und dargestellte Anwendungssysteme
- Identifikation vonMehrfachanwendungungen

Steuerungssysteme


Personio

PIMS

Prozesslandkarten erlauben es bestimmte fachliche Aspekte zu visualisieren.


Prozesslandkarte

Ein Beispiel

Prozesslandkarte

Ein Beispiel

QuizApp

Einwahldaten

URL: https://quiz.lswi.de/login

Lecture Code: aba19

Entwicklung einer Prozesslandkarte

Vorgehen

- Erhebung der Anforderungen an die zu erstellenden Softwarekarten (Welche Aspekte sollen betrachtet werden?)
- Festlegen der Darstellungsformen der einzelnen Prozesse und Merkmale (z.B. Prozessschritte der Wertschöpfungsketten)
- Horizontale: Abbildung der Prozesse oder Prozesschritte
- Vertikale: Abbildung des zu visualisierende Merkmals, bzw. Entitäten denen Anwendungssysteme zugeordnet werden sollen
- Verortung eines Anwendungssystems
 (durch Länge und Breite des Kastens = transportiert die Information, welche Prozesse das Anwendungssystem unterstützt und welche Ausprägung das visualisierte Merkmal annimmt)
- Legende: beinhaltet Ausprägung des visualisierten Merkmals (z.B. System: blau=in Planung oder Projekt: gelb=ldee)

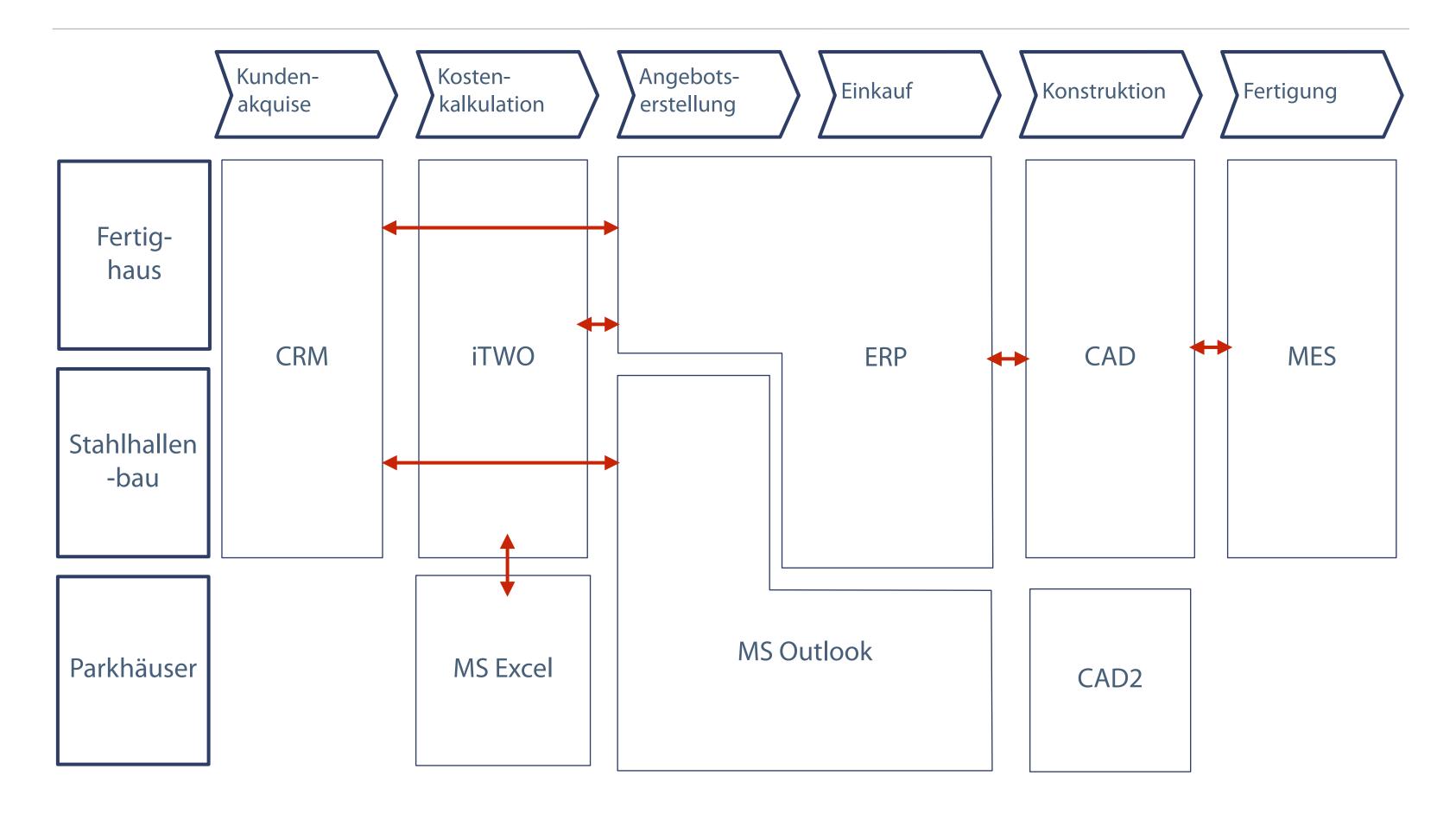
Schnittstellenanalyse

Aufbau

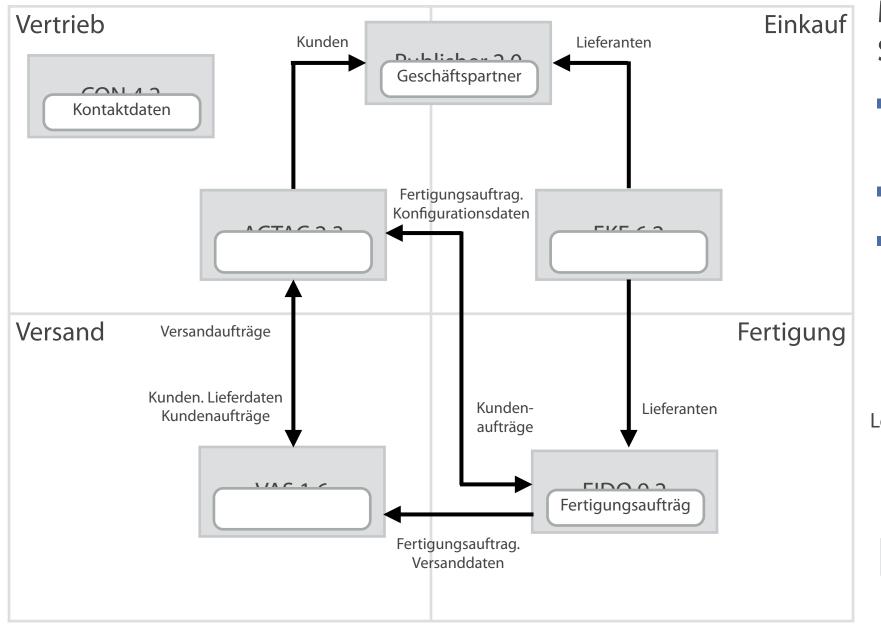
 Analyse der Verbindungen unter Systemen durch Anzahl, Häufigkeit, Performance und Stabilität

Typische Visualisierungen

- Aufbauend auf Clusterkarte, Produkt/Prozess-Matrix sowie Prozesslandkarte
- Maximale Anzahl von Schnittstellen N mit n Systemen:


 $N=(n^*(n-1))/2$

Untersuchung

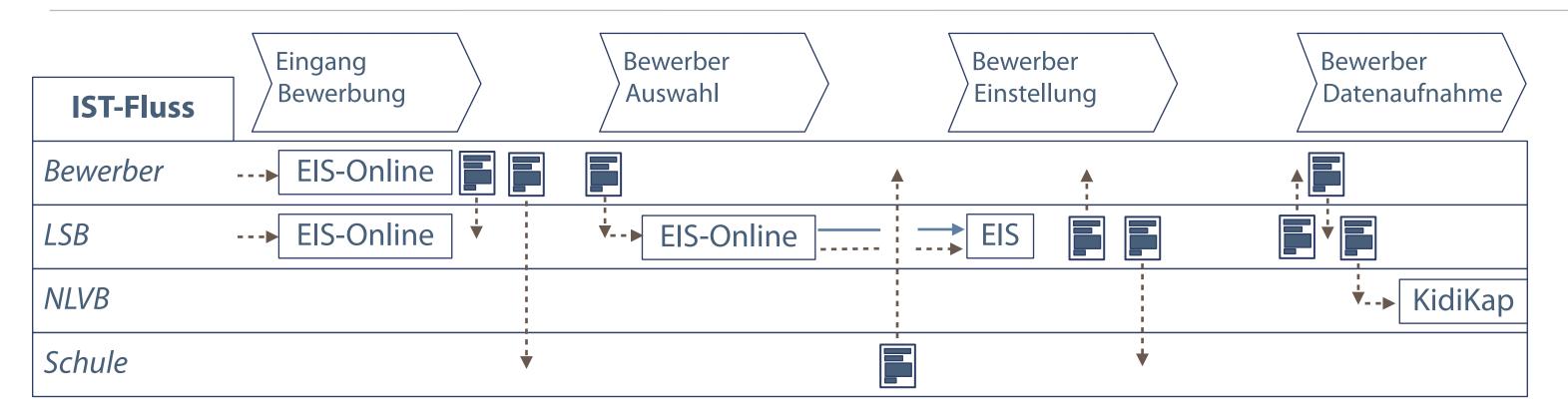

- Entfallen von Systemen durch anderen Zuschnitt
- Zusammenfassung von Systemen
- Überflüssige Systeme eliminieren
- Häufigkeit der Schnittstellennutzung
- Aktualisierungsanforderung
- Stabilitätsanforderungen
- Verfügbarkeitsanforderung

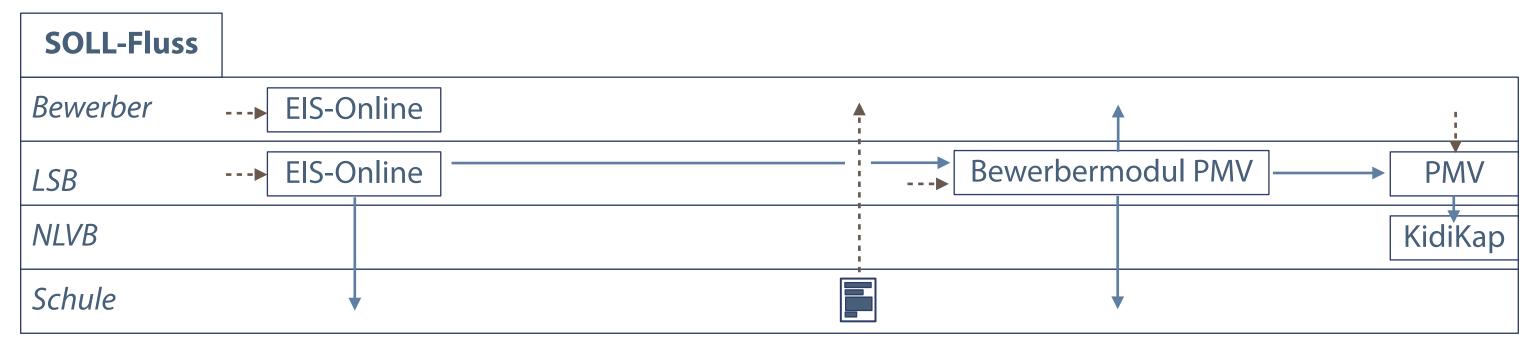
Analysierbar durch Softwarekarte mit Datenfluss als Verbindung

Produkt/Prozess-Matrix mit Schnittstellen - Redundanzen und Lücken erkennen

Abhängigkeitsanalyse

Mögliche Ergebnisse und Schlussfolgerungen


- Verbindung zwischen verschiedenen Ebenen und Sichten der Anwendungslandschaft
- Verwendung von Managementtools
- Auswirkungen des Wegfalls eines Systems


Fachliche Domäne Ausschnitt: Privatkunden / Zentrale Informationssystem mit Informationsobjekten

Informationsfluss

Abhängigkeitsanalyse ist insbesondere bei Neueinführung oder Entfernung eines Systems grundlegend.

Daten- und Dokumentenfluss im Prozess: Neueinstellung in den Schuldienst (Land Niedersachen)

Papierdokumente

Dokument / Datenaustausch per Post / manuelle Eingabe

automatischer Datenaustausch/ elektronische Nachrichten

Heterogenitätsanalyse

Ablauf

- Analysemittel ist wieder die Matrix, aber Ersetzung der Produkte durch Organisationseinheiten
- Zuordnung von Anwendungssystemen zu Geschäftsprozessen und Organisationseinheiten
- Analyse auf Entwicklungslinien der Anwendungssysteme
- Hohe Anzahl von Entwicklungslinien pro Zelle = Indikator für Heterogenität
- Zusätzlich Erhebung von Werten zur Verbreitung und absoluter Anzahl der Systeme

Untersuchungen

- Verhältnis von Entwicklungslinien zu Organisationseinheiten
- Begründung ev. durch organisatorische Unterschiede Wildwuchs?
- Eigenheiten einzelner Organisationseinheiten, die auf ihr eigenes Anwendungssystem bestehen?

Die Analyse der Heterogenität ist der eigentliche Kern des Architekturmanagements.

Analyse der Heterogenität

	Unternehmen steuern	Kunden betreuen	Produkte entwickeln	Neugeschäft aquirieren	Bestand verwalten	Risiken steuern	kontro	nzen ollieren teuern
Leben						\Diamond		
Kranken								
Komposit								
Rückver- sicherung								
Bauspar		\Diamond \bigcirc						
Finanzie- rung		\Diamond						
Industrie								
Entwicklungslini	e Symbol							
Cobol		C++	Datawareho system	use Offi	ce [[_]			
Java	Sm	nalltalk	SAP	.NE	T O			

Analyse der Heterogenität im Infrastrukturbereich

Klassifikation aller Infrastruktursysteme:

- Z.B.: Datamanagement, Security Management, Communication, Operating Systems, User Management, and Support, Administration and Operation
- Erkennen von Überpopulation

Erstellung eines "Warenkorbs" - Gliederung der Systeme in Support Levels:

- Level a: Volle Unterstützung der enthaltenen Infrastrukturkomponenten
- Level b: Volle Unterstützung für Produktion, keine Entwicklungsunterstützung
- Level c: Eingeschränkte Unterstützung für Produktion

Die Verbindung von Heterogenität der Anwendungslandschaft und Infrastrukturkomponenten läßt unnötigen Ballast erkennen.

Beispiel GVL: Geplante Technologie-Governance im zukünftigen EAM-Tool zur Steuerung der Heterogenität

Whitelist – Empfohlen / Standard

- Technologien sollen aktiv in neuen Projekten eingesetzt werden
- Zukunftsfähige, strategisch bevorzugte Komponenten
- Beispielkandidaten: moderne Datenbanken, Identity-Management-Lösungen

Greylist – Toleriert / Übergangsphase

- Einsatz in bestehenden Systemen weiterhin zulässig
- Für neue Projekte nicht mehr freigegeben
- Typisch für Legacy-Technologien oder Altversionen

Blacklist – Verboten

- Technologien sollen unternehmensweit nicht mehr eingesetzt werden
- Nur für unvermeidbare
 Altanwendungen geduldet

Erweiterung der Heterogenitätsanalyse um Governance-Mechanismen zur aktiven Technologiesteuerung.

Beispiel GVL: Lebenszyklus- und Bewertungsstati für Technologien

Software-Stati im geplanten EAM-Tool

- Adopt bevorzugt einführen
- Trial Pilotprojekte
- Assess Evaluieren / Tests
- **Hold** nicht mehr neu einsetzen
- Scale bewährte Technologie breit ausrollen

Ziel für das Architekturmanagement

- Reduktion übermäßiger technologischer Vielfalt
- Klare Vorgaben für Projekte und Entwicklungsteams
- Vereinheitlichung und Standardisierung der Infrastruktur
- Vermeidung von Wildwuchs und redundanten Technologien
- Unterstützung der Heterogenitätsanalyse (Support Levels A/B/C)

Das geplante EAM-Tool der GVL soll Technologieentscheidungen transparent und steuerbar machen.

Konformitätsanalyse

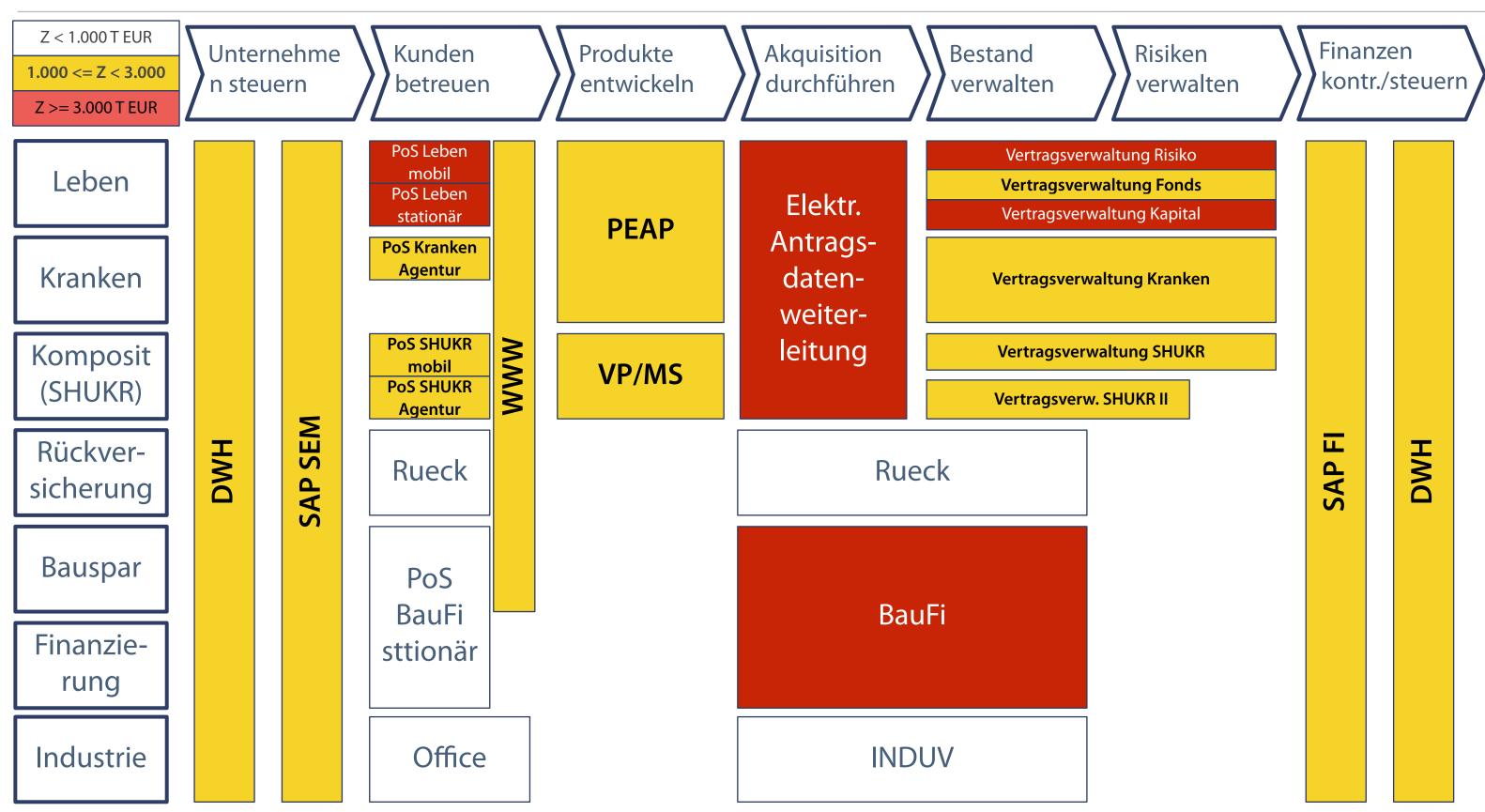
Compliance Rules Prüfungen (entsprechen Existenzbedingungen)

- Dokumentation zu definierten Elementen der Unternehmensarchitektur
- Verfahrensbeschreibungen
- Gesicherte Verfahren für Backup, Recovery, Autorisierung etc.
- Security Policy

Konformität für IT-Governance

- Konformität zu den Referenzarchitekturen
- Ausschließlicher Einsatz von im Warenkorb befindlichen Entwicklungswerkzeugen
- Unternehmensinterne Zertifizierung für alle Infrastrukturkomponenten
- Konvergenz der Entwicklungslinien hin zur Referenzarchitektur

Die Prüfung auf Konformität ist eine Kernaufgabe des Architekturmanagements.


Kostenanalyse

Vorgehen

- Genaue Aufschlüsselung der Kosten nach Beschaffungsinvestition, (I)
 Wartungskosten (W)
 Betriebskosten (B)
 Differenziert nach Personalkosten(pk) und Sachkosten(sk)
- Initialinvestition herunterbrechen auf jährliche Abschreibungskosten (Ad)
- Jährliche Kosten
 K_{ASi} = ((Isk_{ASi} + Ipk_{ASi}) / Ad) + Wpk_{ASi}+ Wsk_{ASi} + Bsk_{ASi} + Bpk_{ASi}
- Werte pro AS eintragen in Matrix

Die Kostenanalyse hilft bei der Entscheidung zur Projektaktivität.

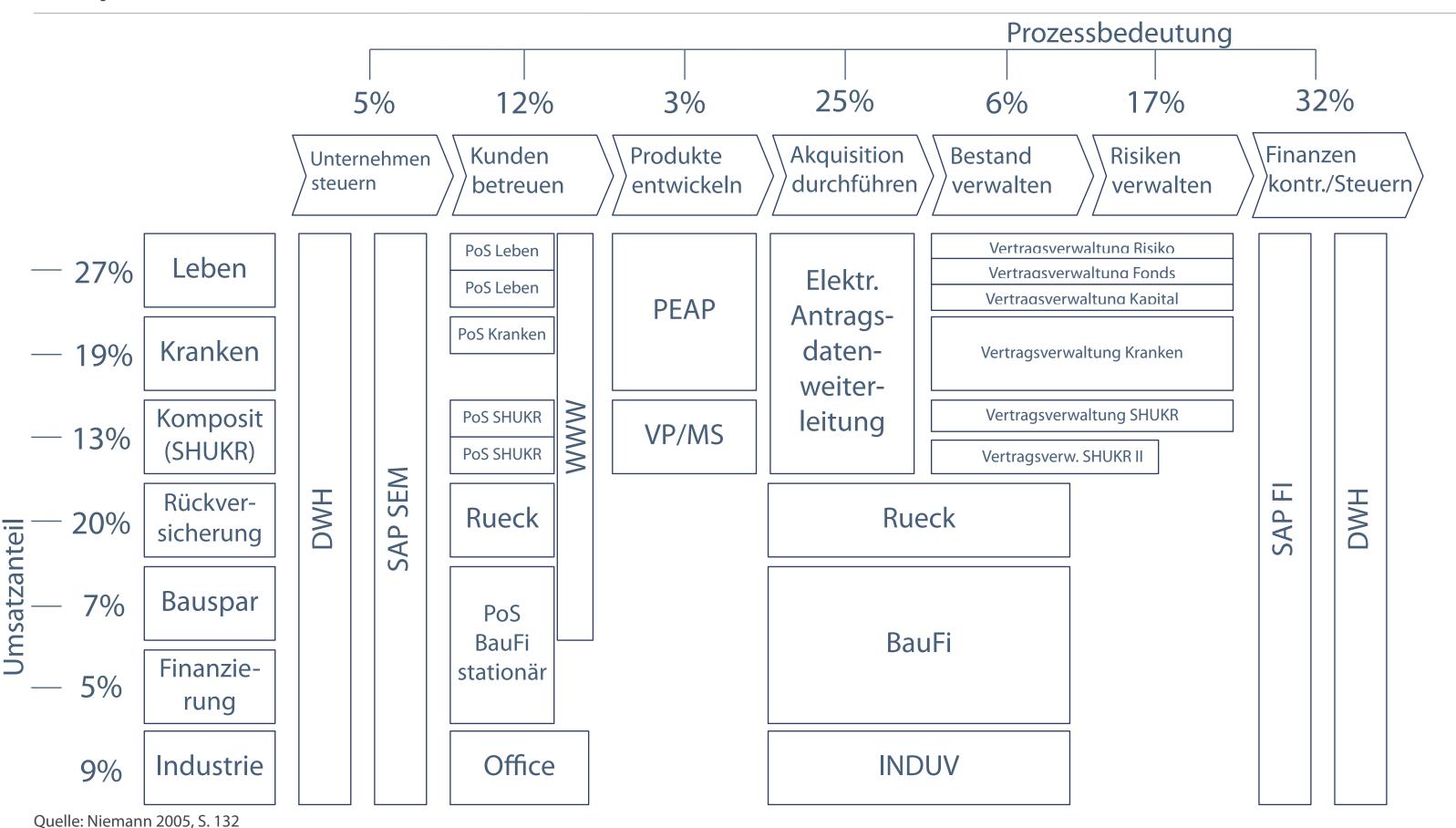
Kostenanalyse Beispiel für die initiale Beschaffungsinvestition

Analyse der Kosten/Nutzen und Risikos von IT-Systemen im Bebauungsplan

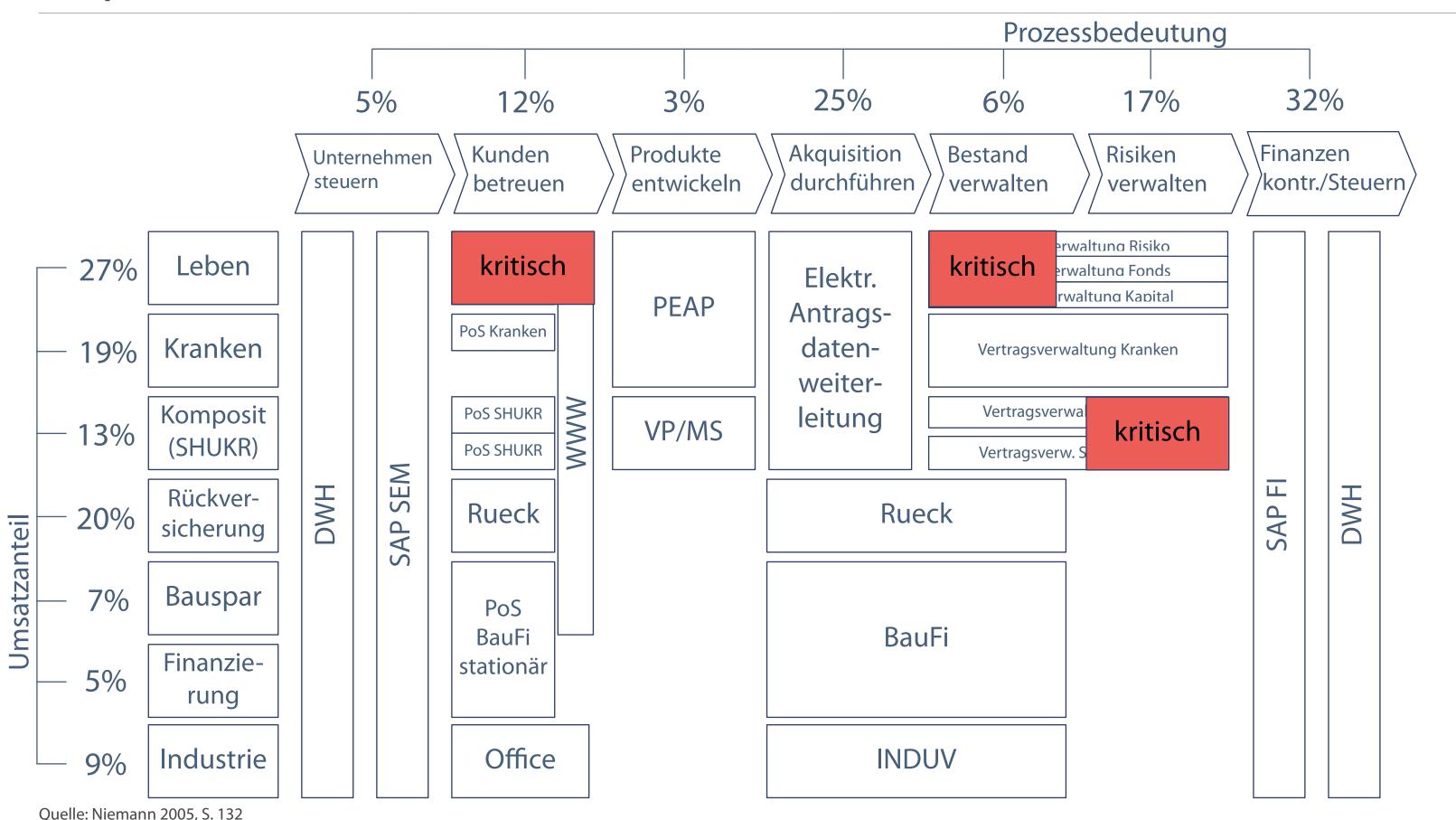
Strategische Entscheidungshilfe

 Über die Ermittlung der Kosten können strategische Entscheidungen bezüglich der Systeme getroffen werden

Nutzenanalyse


- Nutzenanalyse dient der Priorisierung von zu ergreifenden Maßnahmen
- Kaum Metriken
- Identifikation der Prozesse mit hoher Bedeutung für den Unternehmenserfolg und Produkte mit aktuell hohem Umsatzanteil
- Herleitung über Matrix möglich

Verschiedene Herangehensweisen


- Summe der Investitionen
- Bewertet durch Nutzer oder Betreuer
- Wirkung auf Unternehmensziele
- Unterstützungsgrad für die Geschäftsprozesse
- Bewertung des max. Schadens bei Ausfall

Eine Nutzenanalyse ist auf unterschiedlichen Wegen möglich und kaum operationalisierbar.

Nutzenanalyse Beispiel

Nutzenanalyse Beispiel

Architekturbewertung

Vor- und Nachteile

Vorteile

- Vorrangig ökonomische Nutzen
- Frühe Identifikation von Qualitätsproblemen
- Qualitätsnachweise

Nachteile

- Beschränkte Aussagefähigkeit
- Schätzung, da Spezifikation unvollständig
- Hoher Aufwand

Trotz des teilweise hohen Aufwands ist eine Architekturbewertung zur Frühwarnung notwendig.

QuizApp

Einwahldaten

- URL: https://quiz.lswi.de/login
- Lecture Code: aba19

Analyseverfahren für Anwendungslandschaften

Komplexität von Anwendungslandschaften

Virtualisierung und Contenerisierung

Analyse der Komplexität

Wissenswertes

- Kaum Metriken
- Messung der Komplexität ganzer Anwendungslandschaften auf Grund von fehlenden Instrumenten nicht möglich
- Generell gilt: Komplexität Anwendungslandschaft = f (Anzahl Anwendungssysteme, Anzahl Schnittstellen)
- McCabe-Metrik: Berechnung der inneren Komplexität von Softwaresystemen
- Komplexität K eines Systems ergibt sich aus der Anzahl von Knoten und der Anzahl der Kanten
- Bislang keine Benchmarks für Anwendungslandschaften
- Ermittelte Kennzahl = Indikator für Fortschritt

Die Analyse der Komplexität ist momentan nicht operationalisierbar.

Kostenentwicklung bei Anwendungslandschaften

Kostentreiber

	Kosten	Inanspruchnahme
Hardware	↓30x	1
Netzwerkverbindungen	↓30x	†
Lizenzen	→	\rightarrow
Dienstleistungen	\rightarrow	↑ ↑

Kostentreiber

- Komplexität
- Abhängigkeiten
- Integrationsaufwand
- Change Management (Menschen)
- Anpassungsaufwand

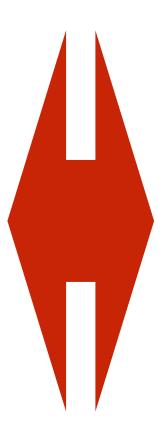
Messung von Komplexität

McCabe Cyclomatic Complexity

 Anzahl der möglichen Pfade durch einen Codeabschnitt

Halstead Metrics

- Größe des Vokabulars
- Anzahl von Operatoren und Operanden


Hier wird die Berechnung der Komplexität von Datentabellen, Programmen usw. benötigt.

"The Application-centric mindset…"

Benutzungsoberfläche

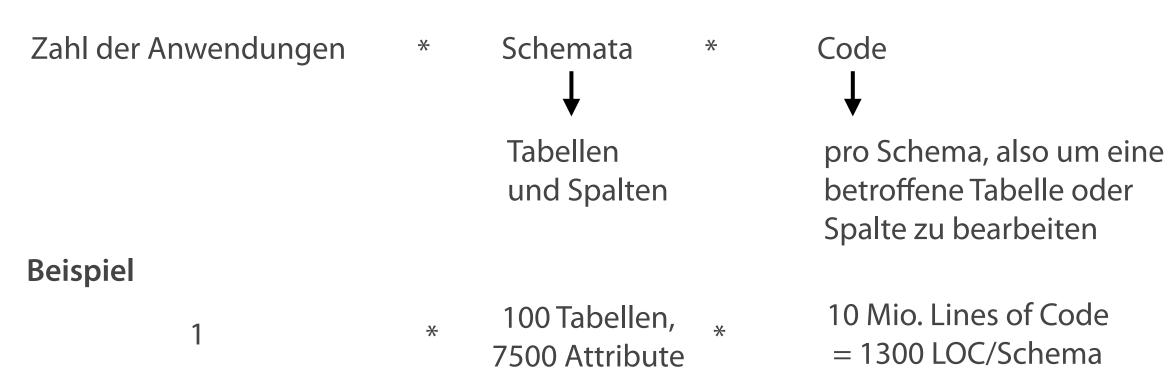
Business-Logik

Datenmodell

Änderungen betreffen stets alle drei Ebenen, weil Business-Logik Validierung, Sicherheit, Identity Management, Interpretation und Geschäftslogik übernimmt

...führt zu unsinnig hohen Kosten bei der (Weiter-)Entwicklung von Anwendungssystemen

Komplexität der Anwendungslandschaft


Notwendige Komplexität

10%

Unbeabsichtigte Komplexität

90%

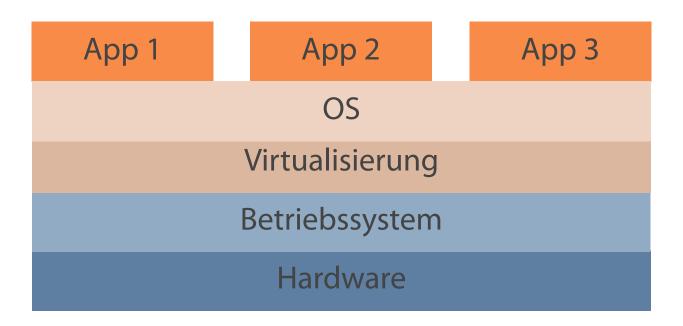
Berechnung

Wichtigste Aufgabe ist die Verringerung der unbeabsichtigten Komplexität!

Analyseverfahren für Anwendungslandschaften Komplexität von Anwendungslandschaften Virtualisierung und Contenerisierung

Virtualisierung

Beschreibung


- Beschreibt die Nutzung von der selben Hardware durch mehrere Betriebssysteme gleichzeitig
- Dabei liegt der sogenannte Hypervisor (virtual machine monitor) zwischen der physischen Hardware und den virtuellen Betriebsystemen
- Hypervisor verteilt die Ressourcen der physischen Hardware je nach Bedarf der Betriebssysteme

Vorteile

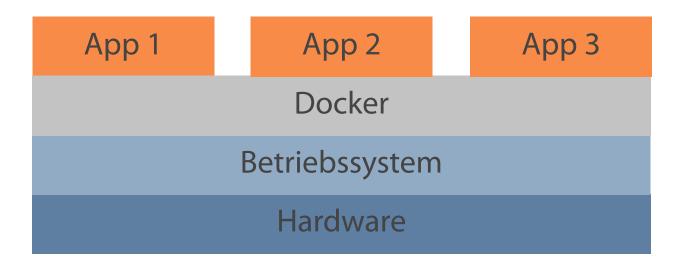
- Effizientere Auslastung bereits vorhandener Hardware
 - Reduzieren
 Anschaffungskosten für
 zusätzliche Hardware für
 verschiedene
 Betriebsysteme oder
 Anwendungen

Nachteile

- Einrichtung von virtuellen Maschinen benötigt Zeit und Fachpersonal
- Durch die Spaltung der Rechenleistung auf mehrere virtuelle Systeme geht teilweise Rechenleistung verloren
- Besondere Herausforderungen an den Datenschutz

Contenerisierung

Beschreibung


- Ein Container beschreibt eine schlanke Virtualisierung direkt auf einem Host-Betriebssystem
- Dabei wird auf Basis einer Konfigurationsdatei ein Image mit beschriebenen Dependencies, Einstellungen und Programmversionen erstellt
- In diesem Image können dann Programm ausgeführt werden, ohne das Einstellungen des Host-Betriebssystem geändert werden

Vorteile

- Garantiert im Software
 Engineering ein gleiches
 Ergebnis bei allen Usern
- Ermöglicht das zeitgleiche Arbeiten an verschiednen Projekten mit unterschiedlichen Konfigurationseinstellungen

Nachteile

- im Container steht üblicherweise kein graphisches Benutzerinterface zur Verfügung
- Da die Prozesse direkt im Host-Betriebssystem laufen, stellen Container keine Sicherheitsschicht ("Sandboxen") dar

Literatur

De, Brajesh 2017: Designing a RESTful API Interface

Hanschke, I. (2023) .Strategisches Management der IT-Landschaft – Ein praktischer Leitfaden für das Enterprise Architecture Management. Hanser.

Hochschule Bielefeld (2024). Einführung in Docker. https://www.hsbi.de/elearning/data/FH-Bielefeld/lm_data/lm_1359639/building/docker.html (abgerufen am 22.11.24)

Ionita, M. T.; Hammer, D. K.; Obbink, H. (2004): Scenario-Based Software Architecture Evaluation Methods: An Overview. Department of Mathematics and Computing Science, Technical University Eindhoven; Department Software Architectures, Philips Research, Netherlands, 2004

Kruchten, P.: Architectural Blueprints—The "4+1" View Model of Software Architecture, IEEE Software 12 (6) November 1995, pp. 42-50

McComb 2018: McComb, D: Software Wasteland. How the application-Centric Mindset is hobbling our Enterprises, Basking Ridge NJ 2018

Niemann, K. D. (2005): Von der Unternehmensarchitektur zur IT-Governance: Bausteine für ein wirksames IT-Management. Springer-Verlag Wiesbaden 2005.

Reussner, R.; Hasselbring, W. (Hrsg.) (2008): Handbuch der Software-Architektur. dpunkt 2008.

Hashemi-Pour, Cameron (2024). https://www.techtarget.com/searchitoperations/definition/virtualization (abgerufen am 22.11.2024)